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ABSTRACT

Autonomous Underwater Vehicles (AUVs) are increasingly being used by military forces to
acquire high-resolution sonar imagery, in order to detect mines and other objects of interest
on the seabed. Automatic detection and classification teclmiques are being developed for
several reasons: to provide reliable and consistent detection of objects on the seabed; to free
human analysts from time-consuming and tedious detection tasks; and to enable autonomous
in-field decision-making based on observations of mines and other objects. This document
reviews progress in the development of automated detection and classification teclmiques for
side-looking sonars mounted on AUVs. Whilst the teclmiques have not yet reached maturity,
considerable progress has been made in both unsupervised and supervised (trained)
algoritluns for feature detection and classification. In some cases, the perfonnance and
reliability of automated detection systems exceed those of human operators.
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Automated Detection and Classification in
High-resolution Sonar Imagery for Autonomous

Underwater Vehicle Operations

Executive Summary

Autonomous Underwater Vehicles (AUVs) are increasingly being employed for mine
reconnaissance, mine hunting and hydrographic survey operations. Side-looking sonar
systems can generate high-resolution seabed imagery, indicating the presence of mines
and other bottom objects. Whilst human analysts may be tasked to examine the data,
this approach is resource-intensive and potentially unreliable, as analysts become tired
or inconsistent in their performance and are often distracted by other tasks.

This document reviews the development of techniques for automated detection and
classification of objects on the seabed from this imagery. These techniques have been
developed to provide more reliable and consistent detection of significant objects, in
order to free operators from these time-consuming and tedious detection tasks.
Automatic detection and classification also enable real-time sonar processing to take
place onboard suitably equipped AUVs, allowing for autonomous decision-making
based on current observations.

Techniques for computer-aided detection/ classification (CAD/ CAC) in sidescan sonar
imagery have been under development since the early 1990s, principally in North
America and Europe. The most successful techniques rely on the presence of a coupled
acoustic highhght and shadow associated with an object sitting proud of the seabed.
The challenge has been to develop algorithms that can detect and classify mine-like
objects reliably, with very few false alarms. The performance of these algorithms
depends on the sonar system, the background clutter and other prevailing
environmental conditions, which can significantly influence the observability of target
objects in sonar imagery.

Two broad classes of detection/ classification algorithm are in use: supervised
algorithms, requiring training data with target objects in known locations, and
unsupervised algorithms. Well-designed supervised algorithms can be expected to
have superior performance for particular environments when trained with appropriate
data. The main limitation in applying these algorithms is that suitable training data
sets are not always available or easy to acquire. The training data must be extensive
and obtained under similar sonar and environmental conditions to those in the data for
which object detection is required, but in the training data the actual distribution of
mine-like objects must be known. Unsupervised algorithms are designed to work
under a range of conditions, in the absence of training data. They are therefore simpler
to implement operationally, without the requirement for additional surveys to obtain
suitable training data.



Fusing the results of several different algorithms can dramatically improve the
performance of CAD/CAC systems over the performance using anyone of these
algorithms on its own. Different methods of fusing the results have been tested and
enhanced detection probabilities demonstrated, with acceptably low false alarm rates.
In order to achieve significant gains, it is necessary for these algorithms to perform
flmdamentally differently from one another. Using this approach, CAD/CAC
performances exceeding human performances have been observed.

Synthetic aperture sonar (SAS) has the operational advantage of allowing for high­
resolution surveys of the seabed with an increased detection range, enabling AUVs
with these sonars to survey the seabed more rapidly. CAD/ CAC techniques developed
for sidescan sonar have also been applied to SAS imagery. While the shadows in SAS
imagery are less distinctive and there are some other differences from conventional
sidescan, processing techniques are being developed to allow objects in SAS imagery to
be readily detected by automated processing.

For post-processing of seabed imagery, it remains to be seen whether CAD/CAC
systems will be trusted to take the place of human analysts. For this to happen, the
success of these systems must be demonstrated for a range of operational and
environmental conditions. It is envisaged that, once these systems are trusted, they will
be routinely employed to highlight areas of images that warrant close inspection by a
human analyst, obviating the requirement for the analyst to scan through all the data.
This procedure will greatly increase the speed and efficiency of mine countermeasures
operations and other operations requiring seabed feature detection.

When CAD/ CAC systems are incorporated into real-time processing systems on board
AUVs, the vehicles will be able to make autonomous decisions based on detection of
seabed features. An AUV could be programmed to respond to the presence of a mine­
like object in one of several ways: by returning to the location of the object for a closer
inspection with higher-resolution sensors; by tasking another vehicle to examine the
object in more detail; or by transmitting information about the object back to a control
platform. This technology is likely to provide a significant enhancement to the
effectiveness of naval mine countermeasures and underwater survey operations.
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1. Introduction

Making sense of imagery is something that comes naturally to humans! but it remains a
challenge to provide a similar capability to computers and robotic systems. Nevertheless!
computational image processing has progressed rapidly in the last twenty years! enabled by
developments in image processing techniques and software and by rapid advances in sensors
and computer performance.

The emergence of robotic systems has been a key driver for developments in computational
image processing. Unmanned vehicles! particularly autonomous vehicles! are particularly
benefited by advances in image processing! as they are thereby enabled to make decisions
about their environments in order to navigate and perform their tasks. Image analysis
potentially enables a mobile robot or autonomous vehicle to respond to the presence of
objects! plan complicated navigational paths and avoid collisions.

Image processing is an enormous field of research with many potential applications to
unmanned vehicle systems. This report considers image processing techniques that are
primarily relevant to unmanned maritime vehicle systems tasked with naval mine hunting
and route surveillance operations; ultimately! such vehicles require capabilities for
autonomous detection and characterisation of mine-sized objects on the seabed and in the
water colunm.

At present! high-resolution side-looking sonar systems! such as sidescan sonar (SSS) and
synthetic aperture sonar (SAS)! are the tools of choice for imaging the seabed to detect mines
and mine-like features. Sonars of this type and various high-resolution optical and laser
imaging systems also feature as the main tools for further classification and identification of
detected objects. Large data volumes are an inherent consequence of the use of high­
resolution imaging systems. More often than not! the communications links available on
remotely operated or autonomous systems lack sufficient bandwidth to transmit such data
off-board in real or close-ta-real time. Consequently! it is often not possible for a human
analyst to have enough information to make a timely decision about the best course of action.
Communications bandwidth is a particular constraint on the operation of Autonomous
Underwater Vehicles (AUVs); there is insufficient bandwidth in underwater acoustical or
electromagnetic communications channels to support rapid transmission of sonar data! so
imagery is typically stored on board the vehicle! to be downloaded and processed after its
mission is complete.

The capability to process high-resolution imagery on board an unmanned vehicle is highly
desirable! to give the vehicle an autonomous decision-making capability and also to augment
the capability of humans involved in image analysis. But while the vehicle navigation and
guidance technologies have reached the point where unmanned marine surveys have become
routine! automated image analysis techniques are not mature. Many approaches to image
analysis are available and they vary Widely in their speed! efficacy! resource requirements!
accuracy and robustness. Hence! there is a need to examine the available techniques! and to
employ and develop techniques applicable to Australian Unmanned Maritime System (UMS)
operations.
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In 2000! Perry [1] reviewed the applications of image processing to mine warfare sonar
operations. The current document updates that work and concentrates more specifically on
high-resolution sidescan and synthetic aperture sonars of the kind used in unmanned
maritime vehieles. The processing of forward-looking sonar imagery is not considered here!
because forward-looking imaging sonars are not currently available in most autonomous
maritime systems. This is not to imply that such sonars are not worthy of study if and when
they become available. It should be noted that somewhat different techniques are appropriate
to the processing of data and imagery from such sonars.

Section 2 describes in more detail the military operational advantages of automated sonar
image processing for VMS operations. In Section 3! features of side-looking sonar imagery are
described! as it is these features that determine the kind of processing that is suitable for
computer-aided detection (CAD) and classification (CAC).1 Section 4 describes different
approaches to pre-detection image enhancement. The development of CAD/ CAC processing
techniques is surveyed in Section 5! and advantages of fusing different algorithms are
discussed in the following section. Some differences apply in the CAD/CAC processing of
SAS imagery! as described in Section 7. Finally! overall conelusions and implications for future
research by DSTO and the Australian Defence Organisation are presented in the final section.

2. Operational advantages of automated image.proceSSIng

The need to maintain maritime freedom of manoeuvre implies a requirement for a capability
to survey shipping lanes! ports and harbours and to detect and identify sea mines and other
objects of significance which might threaten safety of navigation. Currently! this capability is
provided through a variety of manned assets and elearance diving teams. However! for
reasons of safety! economy and efficiency! unmanned vehicles are increaSingly being used as
complementary or alternative tools for such tasks.

Automated image processing has the potential to make major contributions to the task of
deteCting and characterising small objects! particularly for mine reconnaissance and mine
hunting operations.

2.1 Automation as a decision aid

In the near term! automation has the potential to reduce the burden on human analysts
engaged in the post-mission analysis of large volumes of sonar and other sensor data recorded
by high-resolution sensors. The importance of this capability will increase as the resolution of
the data increases. Put simply! analysis of seabed imagery is a tedious! time-consuming task
requiring considerable attention on the part of the operator. Computer-aided
detection/ classification (CAD/ CAC) of objects in sonar imagery can free operators to
concentrate on complex tasks! such as mine identification and disposal! rather than more

1 The terms' AID' (automatic target detection) and'ATR' (automatic target recognition) are also in use;
'ATR' is commonly used as an alternate to 'CAD/CAe'.
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routine image inspection and analysis. Automation potentially enables faster, more consistent
processing of the data, eliminating problems of variable performance caused by operator
distraction or fatigue.

Partial automation, whereby operators are alerted by the CAD/ CAC system to the presence of
mine-like objects (MLOs) and other significant features within the data, can also be valuable
as a means of reducing the data that the operators must visually inspect to relatively limited
areas of concern. This process is more rapid and reliable than relying on personnel to go
through all the unprocessed imagery, provided the probability of detection of significant
features is acceptably high and the probability of false alarms is acceptably low. A useful rule­
of-thumb is that, for an automated detection system to be trusted, the expectation of deteCting
a genuine target must be at least ten times the expectation of encountering a false alarm [2].

Pitfalls in this process have been described in detail by Kessel [2-4]' In many cases, where
CAD/ CAC systems are intended to assist an operator in detecting targets, these systems come
to be regarded more as a burden than an aid. This situation arises when CAD/ CAC systems
and human operators analyse the same data, but come to different conclusions about the
presence of valid targets. This 'second opinion' places additional cognitive burdens of
dehberation and ambiguity on the decision-makers, which they find unhelpful. A more
satisfactory approach is to have a CAD/CAC system that performs a simple task with high
rehability, so that the job of going through all the data is left to the system alone. Such a
system can be designed to detect regions of interest to be passed to a human operator for
investigation. Imagery from only these regions is passed to the operator, thereby avoiding
confusion or conflict between the judgements of the CAD/ CAC system and operators in other
parts of the data.

It is difficult to create a CAD/ CAC system that is trusted sufficiently by human operators to
ensure its regular operational use. When such a system is being tested operationally,
comparisons are often made between the detections of the CAD/CAC system and those of a
human operator. Kessel [2] has identified and quantified problems that can arise in this
supervised automation process, caused by:

(i) human operators performing better than the machine at the detection process and
rendering the CAD/CAC process unrehable; and

(ii) operators themselves performing unreliably at difficult detection processes, and
hence being unable to recognise high-quality performance of a CAD/ CAC system.

Both of these scenarios can lead to the CAD/CAC system being rejected. A possible solution
to this conundrum is to have independent, objective means of quantifying the performance of
a CAD/ CAC system, such as assessments of performance in detecting known targets - not
relying solely on comparisons with the performances of human operators.
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2.2 Automation and unmanned maritime vehicles

A major attraction of UTIlllanned maritime vehicles in mine warfare applications is that all
types of vehicle diminish the risks inherent to personnel and high-value platforms working in
a minefield. In terms of automated image processing, further advantages accrue from the
nature of autonomous surface and underwater platforms:

1. Image quality. AUVs and actively-stabilised surface-towed sensor platforms provide
exceptionally stable, uniform platforms for high-resolution sensors. In addition, both
types of platform can be operated in 'terrain-following' mode, whereby their altitude
above the seabed remains approximately constant and image resolution and contrast
remain at near optimal levels throughout the mission.

2. Access to the underwater environment. Unmanned Maritime Vehicles (UMVs) are
typically much smaller than manned platforms with equivalent sensing capability.
They are thus considerably more manoeuvrable. In the case of AUVs, manoeuvre in
constricted areas and close to facilities is practical, as is close-range survey of deep
waters.

3. Capability for clandestine operations. UMVs, particularly AUVs, equipped with
automated image processing capabilities, provide some degree of clandestine mine
detection and characterisation capability.

Automated image processing has a particular role to play in AUV operations, as it can enable
intelhgent onboard decision-making based on acquired imagery. For example, the detection of
a mine-like object or another seabed feature of interest could trigger an AUV to return to the
site of the object for a more thorough inspection with a higher resolution sensor. Also, if
desired, the AUV could surface to transmit target information back to base. Similarly, the
ability of an AUV to detect shoals, coastlines and underwater hazards could enable it to
modify its trajectory and hence travel safely in relatively unknown areas.

In the longer term, rehable real-time processing of imagery from mine-hunting platforms has
the potential to reduce the total human effort required to clear an area of mines, through
increased automation of the entire process. Unmanned vehicles with real-time processing can
potentially work together with other manned and UTIlllanned platforms to cover mine
reconnaissance, hunting and clearance tasks. Real-time processors already exist for some
AUVs and tasking of AUVs by other AUVs has already been demonstrated, but, by common
agreement, the reliability of the process is not yet sufficient for it to be operationally useful.
Better image processing technology is required.
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2.3 Other uses for automated image processing

The prlinary linage processing capabilities being assessed in this shldy are detection and
characterisation of target objects! principally sea mines. Automated linage processing
techniques and related methods can also yield related capabilities that can contribute
significantly to the overall capability of the system; for example:

• A capability to infer sedllnent characteristics such as roughness! acoustic
reflectivity/ scattering strength and mechanical shear strength is useful as a means of
identifying those areas where object detection and characterisation are likely to be
difficult; for example! soft sedllnents where mines may bury.

• A capability to identify and map feahlres of the seabed and in marine struchlres can
be useful when it is necessary to find small objects in cluttered or constricted areas
such as wharves and coral reefs. !Change detection', involving the comparison of
recent and historical data! can assist in the detection of newly placed hazards or
threats! even in cluttered areas.

• A capability to estimate the bathymetry and topography of the underwater
environment can be useful for navigation! and as an input to the survey planning
process.

3. Features of side-looking sonar imagery

3.1 Scanning sensors

Sidescan and synthetic aperhlre sonars are two of a variety of side-looking! scanning sensors,
including multibeam echosounders and laser scanners! which can be used to explore the
seabed and the water volume in detail. Rather than linaging a two-dllnensional area with
every data cycle in the way a camera would! scanning sensors look sideways and downwards!
sensing the environment in a vertical plane. This information is projected onto a line drawn
along the seabed. The data from a single scan line is a record of reflected intensity as a
function of range or! in some cases! as a function of angle. The motion of the platform then
provides a second dllnension! perpendicular to the first. If the platform is moving in a straight
line at uniform speed, the scan-lines are parallel and build up a 'raster chart' of the seabed. If
the scanner looks on both sides of the platform! a two-sided linage is acquired! doubling the
rate of coverage.

3.2 Sidescan sonars

Figure 1 shows an idealised view of the operation of sidescan sonar. The sonar moves along a
straight 'track' at constant speed and altitude; that is, constant height above the seabed.
Transducers on either side of the sonar send out narrow fans of energy localised around
planes perpendicular to the direction ofmotion; that is! !across-track'. Port and starboard sides
of the linagery thus originate from separate sensors. Raw sidescan linagery corresponds to
acoustic echo intensity versus time of flight (echo rehlrn time since the !ping was emitted)! or
equivalently! 'slant range'. The horizontal range can be deduced from the slant range by
assuming thatthe seabed is flat and levet to either side. A track ofindividual sonar scan-lines
is referred to as a !swath'. The region directly under the sonar is referred to as the 'nadir'.

5
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Figure 1: Operation ofa sidescan sonar

Sidescan sonar has no resolution in elevation angle; that is, echoes from a given range produce
almost the same response in the sonar regardless of the elevation (vertical) angle from which
they originated. This is illustrated in Figure 2, which shows an end-view of the acoustic
energy emitted from a sidescan sonar and the echoes that it generates.

Echoes originating directly from the seabed constitute the'signal'. Echoes from the sea surface
and arriving at the sonar via multiple bounces from the seabed or sea surface constitute
unwanted 'reverberation'. The regions underneath the sonar - the 'nadir' - and above the
sonar - the'zenith' - correspond to points of exceptionally high reflectivity from the seabed
and sea surface, respectively. As horizontal range on the seabed is estimated from slant range,
the nadir is also the point at which the range resolution of the sonar is lowest and the
distortion of the imagery is greatest. In addition, many sidescan sonars preferentially
I ensonify' angles dose to the horizontal. Near-vertical angles may be unevenly ensonified or
not ensonified, producing a stripe or intensity variation corresponding to the steepest angles.

Sea surface

///"\

,: Fish

~'

,,

'e:-: 'td
Seabed

First surface return

!

V First bottom return
Seabed returns

,

...... '

Figure 2: End-view ofasidescan sonar, shOWing echoes originating on the seabed, at the sea surface
and in the water column
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Figure 3 shows a typical segment of 'waterfall' inlagery from a high-resolution sidescan sonar.
The sonar is moving up the page. Slant range, or equivalently time of flight, increases from the
centre line to the left and right for the port and starboard channels, respectively. The bright
band in the centre of the inlage corresponds to the emission of the ping. Other range­
dependent features are common to both sides of the inlagery. The dark strip from 0 to 3 m is
the period of low return when the sound is h'avelling through the 'water column'. The 'first
bottom return' at 3 m is followed by some hght and dark ripples extending to approxinlately
7 m due to non-uniformities in the beam pattern of the transducers, when operating at 3 m
altitude. The 'sweet spot' of this sonar extends from approxinlately 10 m to 30 m, the edge of
the inlage. A faint line at approxinlately 16 m corresponds to the first surface return - httle
other evidence of surface reverberation is visible in this inlage, although it may be more
significant if the inlage were collected in choppy conditions. The remaining features in the
inlagery correspond to the texture of the seabed, which consists of alternating bands of
exposed, rippled sand and thick, linear mats of 'line-weed'.

Figure 3: Imagery from a 900 kHz Marine Sonar sidescan sonar installed on a REMUS 100 AUV,
Image intensity corresponds to sonar echo intensity.
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Figure 4: Imagery from the same sonar, exhibiting seabed clutter and surface reverberations

A rather different image from the same sonar is shown in Figure 4. In this case, the seabed is
highly cluttered, containing features corresponding to coral outcrops. The AUV was closer to
the sea surface than to the bottom, so the strong linear feature from the first surface (zenith)
return is closer to the centre line than is the first bottom return. The region between the first
surface return and first bottom return shows strong surface reverberations, dependent on sea­
state.

3.2.1 Identification of contacts in sidescan imagery

Some sidescan sonars are able to provide imagery with pixel resolutions of a few decimetres
or better, suitable for detecting mines and other objects on the seabed. Objects protruding
above the seabed are typically considerably more reflective than the surrounding sediment, so
a bottom object is often associated with a high-intensity 'highlight' in the sonar imagery. In
this sense, a sonar image is similar to a sector-imaging radar image. However, an important
additional characteristic of sidescan sonar imagery is that objects that protrude above the
seabed block the passage of sound to the sediment behind them, thereby casting distinctive
'shadows' - areas of echo intensity considerably lower than the background level arriving
from the seabed. The length of the shadow depends on the vertical extent of the object,
relative to the seafloor. Figure 5 shows a high-resolution image of a small boat equipped with
an outboard motor. Although the highlights in the image give a good deal of information
about the nature of the wreck, only its shadows give an indication of its three-dimensional
shape.

8
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Figure 5: Imagery ofa small boat wreck fram a l8IXJ kHzsidesca" so"ar i"stalled 0" a RENfUS 100
A LIV, srowi"g h1ShllShts, slwdaws ""d deeimdre-Ievel 71:solutio",

For a human a""-lyst or aCAD!CPC process, the presence of a highlight in a eertain size
range, together with an adpeent sha:low, reli"vl y sig""-ls the pres ence of a mi,-.,-like object
(MLO). Figure 6 shows two eX>rnples of highlight-s",,-dow contact detection, 0'-" recorded
with sub-decimetre resolution an::! one at ""-11 the resolution and in poorer con::!itions.

FIgure 6: (Left) Imagery ifa ml"e-shlpefram a l8IXJ kHz S1deSC"" smar lrotalled m a RENfLIS 100
A LIV, srowi"g hlSIi 'Sht a"d adj..,,,,t shldow. Note the preSerlee of reverberatim from
suif..,e w""es as st,,'atioro i" th! imagery, (Rigli) Imagery ifa simIlar mi"e-sh<rpefrom a
9XJ kHz sidesca" so"ar i"stalled 0" th! same vehicle,
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Other types of detection are also possible. Depending on the relative orientation of the sonar
to the object, the strength of a highlight may vary considerably and may indeed fall below the
detection threshold of the sonar and therefore be invisible. Despite this, if the geometry of the
sonar relative to the object is favourable, a shadow may be present even if a highlight is not,
because the passage of sound is blocked by the object. Consequently, it is not uncommon for
the shadow associated with an object to be the only indication of its presence. At the other
extreme, some sonar-object geometries are not favourable to the formation of shadows. If the
horizontal distance from the sonar to the object is not at least two or three times the sonar's
altitude above the seabed, the shadow may not extend far enough from the object for it to be
distinguishable. Alternatively, if the water depth is much less than the range of the object
from the sonar, then 'shadow infill' may occur, whereby Signals arriving at the sonar via
intermediate surface bounces are approximately as intense as the direct signal from the seabed
and cause the same response in the sonar; in effect, the sonar sees reflections of the seabed in
the sea surface and vice-versa. In this case, the contrast of the shadow to the background
intensity may be reduced or eliminated, so that highlights are the only option for object
detection.

Standard operating procedures for sidescan sonar object detection surveys are designed to
maximise the benefits of shadow detection. Sidescan sonars are typically flown at an altitude
of one tenth of the (per side) range setting so that the region where shadow lengths are small
is only a small fraction of the total extent of the imagery. In addition, an infill-line survey
pattern is a standard technique that is adopted when mine detection is an important
component of the survey mission. Primary survey lines are separated by a distance equal to
twice the range setting of the sonar. Secondary 'infill' survey lines are then placed parallel to
the primary lines and offset by one-half of the range setting, thereby ensuring that the nadir
region of each primary line falls within the sweet spot of each secondary line, and vice-versa.
Maximum ranges are also sometimes restricted to avoid shadow infill.

3.2.2 Geometrical and natural factors impacting on CAD/ CAC

Because of the simplicity of the scanning process, sidescan sonar imagery is prone to
numerous unwanted geometrical and natural artefacts that may interfere with the CAD/ CAC
process.

1. Turns. Waterfall imagery is geometrically consistent with the seabed only when the
sonar is travelling in a straight line. Imagery recorded when the vehicle is turning is
strongly distorted and must be identified and discarded.

2. BiolOgical clutter, primarily fish. The swim bladders of fish are efficient scatterers of
sound at most frequencies used for sidescan sonar imaging and the bodies of fish can
block the higher frequencies. Consequently, dense schools of fish can give rise to
contacts with compact highlights and well-defined shadows.

3. ShadOW-inducing terrain, primarily sand ripples. When sand ripples are oriented
within 45° of the vehicle track orientation, they may give rise to alternating highlights
and shadows that have many of the characteristics of contacts associated with mine­
like objects. Ridges, reefs and holes may have a similar appearance.

4. Surface reverberation. Reflections from the zenith and from surface wave facets
oriented towards the sonar may give rise to strong, compact highlights, although they
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are unlikely to be associated with shadows. Whitecaps and bubble trains can be
particularly strong sca tterers of sotmd.

5. Burial. Most high-resolution sidescan sonar frequencies have little or no significant
ability to penetrate marine sediments. Consequently, objects that are partially buried
may lack shadows and vary considerably in appearance from objects that are proud
(lying on the seabed) and objects that are fully buried become completely
undetectable.

6. dutter. Numerous natural and man-made objects such as rocks and packing crates
may appear mine-like when ensonified from particular angles. All such objects are
valid mine-like contacts in the absence of further information; such information may
be supplied by ensonification from different angles or at higher resolution, or some
other form of inspection may be necessary.

7. Seabed variability. The seabed itself is subject to wide variations in composition,
acoustic reflectivity and texture, all of which affect sidescan sonar imagery and the
appearance of contacts with respect to the seabed.

Figure 7: Sidescan sonar imagery from a 900 kHz Marine Sonic sonar installed on a REMUS 100
A UV, showing a mine-shape and various distracting features

Figure 7 shows the effects of turns, fish and surface reverberation on sidescan sonar imagery
containing a mine-like contact. Figure 8 shows a mine-like object located amid sand-ripples,
which have similar acoustic characteristics.
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A UTI, srowi"g a mi"e shIpe located ammg sa"d riplies, and asuifoce reverberatio" elftc/,

3.2.3 Equipment design and CAD!CAC

It cannot be emphasised too strongly tmt starting with a good data set is vital to achieving
success (high probability of detection and classification Pok and low probability of fals e alann
Pfo) inCAD!CAe. It is difficult for any detection an::! classification process, whether human or
computer-based, to work well with noisy, reverberation-domim.ted, distorted or poorly­
resolved imagery. Inves tments in s!"vle som.r platfonns and high-res olution,. high-contras t
sonars are to,refore critical to the success of the mission as a whole. Starting with good data
gives subsequent proces sing a much greater chance of succes s.

Re.olution ato,r things being equal, increasing resolution usually makes detection an::!
classification of contacts eas ier [5]. Various strategies mve been attempted in order to increase
to, resolution of sidescan som.rs in azimuth (along-track).' Two of to,se strategies are:
increasing to, operating fre quency; an::! introducing long, multi-element trarnd ucer arrays
with relatively sophisticated be>rnfonners. TO, first approach has achieved decin-..tre an::!
sub-decimetre resolution as the frequency has approaco,d an::! exceeded 1 MHz. To,re is a
trMe-off, because of the increasing acoustical attenuation of seawater as the frequency
increases. Corneqll'ntl y, on! y limited r""les are attairrole at higo,r frequencies - say, '2D,iXXJ
times the wavelength,. or 30 m at 1 MHz. The second approach m.s achieved 1 to 2 decimetre
resolution with fre quencies of order 500 kHz,. at permps double the range but with much
greater cost and complexity. At pres ent, to, firs t approach is predomim.nt, but the secon::! is
also practic"v Ie, albeit at a higo,r cost and with a physically larger sonar o,ad. Cornider"vle
M vances in range an::! resolution are expected as synto,tic aperture som.r processing becctnes
a mature field, allowing lower frequencies to be used to achieve both ranges exten::!ing
beyond 100 m and srn-decimetre resolution

'It i' o"'iorto achiovo high r<solution in tho ocro<,-trn.ck dir<ction (by high-<~ d tomporol proco"ing)
than along-trn.ck (involving angular or 'F"tiol proco"ing)
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Contrast. Optimal function of CAD/ CAC algorithms rehes on there being sufficient'dynamic
range' or contrast in the imagery to accommodate the highhghts due to strong acoustic
returns, the various mean intensity levels of the seabed and the shadows due to occlusion of
acoustic energy. Successive generations of sidescan sonar have incorporatedprogressively less
noisy amphfiers, particularly at higher frequencies, and digitisers with wider dynamic range.
Nevertheless, the imagery shown in preceding figures was all collected with Marine Sonic
sonars recording data with only 6-bit digitisation, whereas some higher-end sonars employ 8,
12, 16 and even 24-bit [6] digitisation. By careful attention to automatic gain control (AGe)
and time-varying gain (TVG) to preserve useful contrast across the image, compact 6-bit
digitisers, such as in the Marine Sonic sidescan images shown in the figures, can remain
effective. Nevertheless, processing can be improved with higher fidehty data and the use of
digital, rather than analogue, filtering techniques [6]. These improvements come at the
expense of greater cost and complexity of the sonar systems and much greater volumes of
data to be stored and processed.

Platfonn stability. As already noted, AUVs and actively-stabilised towbodies are optimal
platforms for the collection of sidescan sonar imagery, in terms of their ability to maintain
straight, uniform motion at a set altitude above the seabed.

Reverberation. Image 'clutter' corresponding to uninteresting objects on the seabed is
unavoidable, but sonar systems can be designed and equipment operated to minimise the
impact of surface and volume reverberation on imagery. Careful attention to the shape of the
main lobe of the sonar transmit/receive beams and to reduction of sidelobes can reduce the
unwanted reverberation and maximise the effectiveness of the sonar. By operating an AUV
well below the surface and ideally at times of low sea state, surface reverberation effects can
be reduced. Multipath effects including the infilhng of acoustical shadows can be reduced by
ensuring that data are collected at a suitable range, using the operating procedures described
in Section 3.2.1.

4. Image enhancement

Various processes referred to as 'image enhancement' may be apphed to imagery as a pre­
processing step prior to apphcation of CAD/ CAC algorithms. Such processes are intended to
make the tasks of detection and classification easier by removing obvious artefacts and
outhers from the imagery.

The simplest form of image enhancement corrects for the variation of image intensity with
range from the sonar, which may otherwise impact on the optimal thresholds for detection of
targets above background clutter. This variation is partly corrected by TVG and AGC, as
mentioned in the previous section, but such corrections, when performed by real-time sonar
processors, are frequently less than perfect. The dependence of seabed reverberation with
range depends on the frequency of the sonar, its altitude above the seabed and the seabed
type. A rough and rocky seabed will reflect a significant fraction of the incident acoustic wave
back towards the sonar, whether the wave arrives at nadir or grazing incidence, whereas a flat
sandy seabed will reflect back strongly at nadir incidence, but weakly at grazing incidence.
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A common normalisation technique that results in an image intensity that is, on average,
constant with range, operates by dividing the image intensity by an average intensity for that
range. Care is necessary if this technique is to be worthwhile. As can be seen, for example, in
Figure 3, the water-column region is quite different from the remainder of the image. Simple
range-dependent normahsation will not be ideal if the sonar altitude (and hence water­
column width) changes within the image. To deal with this scenario, it can be useful to form a
'slant-range-corrected' image, which is resampled so that the horizontal position on the image
corresponds to the horizontal distance from the nadir (assuming the bottom is flat in the
across-track direction). Imagenormahsation can then be carried out on the resulting imagery.
Image normalisation is not always required - it depends on the CAD algorithm. In the
author's early work [7] it was not carried out, because the detection process involved diViding
each image into subimages for processing, based on the statistics of those subimages
performing the normalisation to some extent as part of the detection process.

A further image enhancement that may be useful is to normalise not only the mean but also
the variance of pixel intensities, for each range, prior to processing. Furthermore, in previous
work on CAD in land imagery [8], pixel intensity values were scaled to convert non-Gaussian
distributions to Gaussian ones (histogram distortion). This was done because the CAD
algorithms used in that work were optimal for a Gaussian distribution of pixel intensities.

Speckle noise reduction is a form of image enhancement that is sometimes used in sidescan
image processing, to remove scintillation caused by coherence effects in the scattered sound. 3

The aim is to remove noise spikes without impairing the capability to detect targets. Johnson
[9] investigated median filtering versus morpholOgical filtering (nonlinear filters involVing
erosion, dilation, opening and closing operations) to reduce speckle noise. Median filters are
often used, but are more computationally costly than morphological filters, which can achieve
a comparable level of performance.

Several more refined statistical techniques have been used to generate enhanced imagery that
minimises high-spatial-frequency noise in sidescan sonar imagery, while preserving features
of interest. The Total Variation Minimisation technique [10-12] minimises a functional4 that
has one term favouring image smoothness (low intensity gradient) and another term
favouring faithful rephcation of the recorded imagery, including features such as highhghts
and shadows. This approach has been demonstrated to improve CAD/CAC performance
significantly. Huynh et ai. [13] used the wavelet transform effectively to reduce high-spatial­
frequency clutter in sidescan sonar imagery, improving detection performance and reducing
false alarm rates. For optimal mine detection performance, the scale of the wavelets should be
matched to the size of expected mines.

3 Speckle noise arises due to constructive interference between different scattering points in the
footprint of the sonar beam, like the speckle that is visible at a point illuminated by a laser pointer.
4 A functional is a mapping from a vector space or a space of functions to (usually) real numbers. In the
TVM technique, the functional is minimised to obtain the function most suitable for reducing the high­
spatial frequency noise in the imagery.
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An adaptive clutter suppression linear filtering technique has been investigated by Aridgides
et ai. [14-15] as a precursor to CAD/ CAC processing. This technique requires training data ­
:iJnages containing background only and :iJnages containing targets. A small window is moved
across the :iJnage! and local values of the covariance matrix are calculated and used to evaluate
filter coefficients to suppress clutter without suppressing targets. This technique is optimal in
a least-squares sense! for Gaussian-distributed clutter. It is more complex and computationally
demanding than the methods of image enhancement described earlier. It does! however!
effectively lower the probability of false alarms (Pfa) in CAD/CAC processing! without
adversely affecting the detection probability (Pd).

An :iJnportant overall systems approach is to collect data such that the requirement for pre­
detection image enhancement is min:iJnised. For complex and cluttered marine environments!
pre-detection image enhancement will always be advantageous! provided it does not :iJnpose
too great a computational burden. This computational burden is a consideration if rapid! real­
time processing is desired.

5. Computer-aided detection and classification

The object of this report is an examination of the relative merits of certain algorithms for
computer-aided detection and classification. This is not straightforward! for a number of
reasons:

• The terms'detection' and'classification' are not well-defined. The act of detection
necessarily involves an element of classification - sufficiently mine-like or not to
warrant further investigations - that must then be resolved by a further
'classificatiod step. Judgements about what constitutes a mine-like object may thus
influence the statistical estimates of the probability of detection/ classification (Pdc) of
mine-like objects and the probability of false alarm (Pfa).

• Performance is environmentally dependent. Certain CAD/ CAC algorithms work well
in particular conditions, such as for detection of mines lying on flat sandy seabeds,
where the signal-to-noise ratio (SNR) is high! but other algorithms may out-perform
them for high clutter, low SNR situations. It is therefore difficult to come up with a
Single approach that is trniversally applicable.

• It is also difficult to make an objective comparison of algorithms that have been run on
different sidescan sonar data sets. Quantitative comparisons are valid only when
different algorithms are applied to the same data sets, with the same definitions of
mine-like objects (MLOs) and false alarms.

• The standard way of quantifying the performance of a CAC/CAC system is by means
of the Receiver Operating Characteristic (ROC) curve, in which the probability of
detection/ classification Pde is plotted against the probability of false alarm Pfa [16L but
often authors do not report the performance of their algorithms in these terms. It is
therefore difficult to compare performances of different algorithms quantitatively.

5 An operational approach to labelling a mine detection thatis adopted by some naval officers is to ask
'Would I drive my boat over it?'
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Noting these considerations, the following analysis of algorithms is descriptive, rather than
being numerically based.

Techniques for computer-aided detection and classification (CAD/ CAC) of mine-like objects
(MLOs) in high resolution sonar imagery have been the subject of concentrated effort in North
America and Europe since the early 1990s [11-47 and references therein]. The general
approach is two-pass: firstly, detect target objects in the imagery with a high probability of
detection and a high probability of false alarm; and secondly, classify detected targets into
MLO and non-MLO categories in order to achieve a much lower total probability of false
alarm.

Because of the distinctive shadows that are cast by a sidescan sonar, the most successful
CAD/CAC algorithms in use all rely on the correlation of the intensity highlights from
bottom objects with the shadows of these objects. In fact, as pointed out in Section 3.2.1, the
shadows generally appear more consistent than the variable highlights from objects of
interest. Therefore, shadows have a primary role in the detection and classification of man­
made objects on the seabed.

The various detection/ classification techniques that have been developed can be broadly
divided into two groups: unsupervised algorithms and supervised learning algorithms.

5.1 Supervised methods

Supervised detection/classification algorithms are 'trained'; that is, they are optimised so as to
locate a set of previously identified mine-like objects within a training data set. The
performance of supervised algorithms is highly dependent on the nature of the training data
set. Ideally, such a data set should contain numerous combinations of backgrounds and MLOs
viewed from different ranges and aspect angles. However, it is not necessarily true that the
training operation should always employ the entire data set. An algorithm that is trained with
one sort of seabed background, or one particular sonar, may perform poorly when applied to
data containing a different kind of background. Likewise, an algorithm trained for one type of
sonar or sonar setting may perform poorly when used with data collected from another. The
point at which a training data set becomes 'sufficiently large' is difficult to define, but there
must be sufficient variety in the training data to ensure that correct classification performance
depends not on anomalles in individual images in the training data, nor on peculiarities of the
particular training data set. The training data set should be representative of all possible
appearances and orientations of mines and backgrounds in the 'test data' - that is, the data in
which detection of MLOs is ultimately required. Improvements in detection and classification
have been observed [17] by using different training data sets for different scenarios (different
image resolutions and SNR values), rather than using an aggregate training data set covering
all possible scenarios.

Because it is difficult to acquire suitable training data in sufficient quantities, some researchers
have generated their own data synthetically, and have inserted mines at random locations,
with random orientations [17,32,36-41]. The mines must be inserted with shadows that are
realistic and take into account the acoustic angle of incidence and the topography of the
seabed. With a sufficiently large data set, receiver operating characteristic (ROC) curves can be
generated showing the probability of detection/ classification (Pdc) as a function of the
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probability of false alarm (Pfa). The training data set is presumably sufficiently large when the
ROC curve does not vary significantly when further data are added to the training data set, or
when particular members of the training data set are removed. A hybrid technique that is
sometimes used is to insert mine-hie contacts artificially into real sidescan sonar imagery.
This approach obviates the requirement to synthesise realistic seabed imagery matching the
test data, while allowing for much more imagery containing mines than can readily be
obtained by field measurements.

The best results in detection and classification for a given sonar data set can potentially be
obtained by fusion of the results from several different algorithms, as will be discussed in
more detail in Section 6.

5.1.1 US Navy sponsored research

Pioneering research on CAD/ CAC processing of sidescan sonar imagery has been undertaken
since the early 1990s by Dobeck and others [13-15, 17-31] at the US Naval Surface Warfare
Center Coastal Systems Station (CSS), in collaboration with colleagues at Lockheed Martin,
Raytheon and Colorado State University. Dobeck et al. [19] initially enhanced the image by
background normalisation, followed by convolution of the image with nonlinear matched
filters as a first-pass detector for MLOs. Filter masks were chosen according to the expected
mine type and the background statistics, taking into account the highlight-shadow pairings
associated with real mines. Targets were detected by scanning a target-sized window over the
normalised matched-filtered image, and counting pixels that exceeded a certain threshold.

Following this first-pass detection, for each of the candidate targets, up to 45 feature statistics
were calculated, pertaining to the size and shape of the highlight and shadow. Optimisation
procedures were used as part of the training process, to determine the best combinations of
features to use to build multidimensional feature vectors for classifying MLOs. Note that it is
not always necessary or desirable to use all the available features; using a smaller number of
mutually independent features is better than using a large number of features that are
interrelated.

Dobeck et al. used two different classifiers to decide whether initially detected targets were
mines: a K-nearest neighbour neural network (KNN) and an optimal discriminatory filter
classifier (ODFC). These techniques are both supervised, and hence require training data in
order to establish classification criteria. The KNN technique involves a two-layer neural
network, which classifies features according to the proximity of the feature vectors to 'feature
vector centres' for each classification class. The ODFC is a classifier based on linear
discrimination theory, using linear filters based on the characteristics of the mines and the
background clutter. The KNN and ODFC classification results were then combined by
Boolean AND to yield the final classification result for each target. This fusion of classification
results gave rise to better classification performance (or lower false alarm rates) than either
technique could achieve individually, because of the fundamental differences between the two
techniques. Advantages of fusing different algorithms will be discussed further in the
Section 6.

An adaptive filter technique was employed at Lockheed Martin by Aridgides et al. [14-15], for
detection and classification of MLOs in sidescan imagery, based on a Bayesian classifier
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known as the log-likeliliood ratio test (LLRT) [21]. Again, this CAD/ CAC technique requires
training of the algorithms using images containing targets and backgrounds. An average
target signature (normalised shape) was estimated from training images containing targets
and a background clutter covariance matrix was calculated from images containing
backgrounds. A two-dimensional linear filter was then formed, optimal in a least squares
sense, to preserve features resembling the average target peak signature while repressing
background clutter, and this filter was applied to the test data.

The initial work by Lockheed Martin was improved and extended to include pre-processing,
adaptive clutter filtering, image normalization and detection, extraction of feature vectors,
orthogonalisation of these vectors and optimised classification using LLRT [22-23]. The final
result was a correct mine classification and false alarm rate performance that was better than
that obtained by an expert human sonar operator.

Also in the 1990s, Raytheon developed CAD/CAC techniques for processing imagery from
the AN/ AQS-20 helicopter-towed minehunting system and the REMUS AUV [22-26]. These
techniques were based on median filtering to reduce speckle, followed by image
segmentation, feature extraction, classification and identification of contacts.

The different CAD/ CAC approaches of CSS, Lockheed Martin and Raytheon are summarised
in Table 1. Several schemes of fusing these different algorithms have been attempted, as
described in Section 6.

Table 1: Comparison ofthree US G4D/G4C algorithms (from [22])

ess Lockheed Martin Raytheon
- Image nonnalisation - Adaptive clutter filter - Multi-stage median filtering
- Nonlinear matched filter detector - Image nonnalisation

detector - Feature extraction - Highlight / shadow
- Feature extraction - Feature orthogonalisation segmentation
- Optimal feature selection transfonn - Invariant shape-based
- KNN attractor-based neural - Optimal subset feature features

net selection - Multi-level scoring-based
- Optimal discrimination - Log-likelihood ratio test classification

filter classifier classifier

5.1.2 Canadian research

Fawcett [32] developed a supervised technique whereby small image sections containing
mines are used as the feature vectors for target detection and classification. Principle
component analysis (PCA) was used to identify the most significant image features to
characterise the different images and variations between them, redUCing the size of the feature
vectors. This is a commonly used technique for facial recognition. Discriminant analysis was
then used to recognize differences between the feature vectors pertaining to different object
classes (manta-like, cylindrical and rock). Linear and quadratic classification techniques were
trialled successfully on synthetic images. In [33], this approach was applied to real trials data
and compared with the use of feature vectors derived from highlight/ shadow segmentation
and analysis. It was found that both approaches worked well, but that the best results came
from a combination of highlight/ shadow analysis and PCA.
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5.2 Unsupervised methods

Training of CAD! CAC processes to recognise mines on the seabed has advantages! in thatthe
methods are optimised to perform well under the training conditions! but there are also
disadvantages. The main issue is that while the process might work well for one kind of sonar
and seabed! it is not guaranteed to perform well when the range! resolution or seabed
appearance is quite different. Because of this limitation and the lack of sufficient quantities of
suitable data for training the algorithms! some researchers have chosen to use untrained
(unsupervised) methods. Note that training data is often difficult to obtain - it requires
images of the seabed that are similar to and representative of those in which target detection is
required! with known targets available for training the algorithms. For mine detection
operations in new and untested areas! the acquisition of suitable training data may not be
practical.

Unsupervised algorithms are generic; that is! they must work for a broad range ofinput data!
and they are not optimised for any particular set of training data. They might not work as well
as an algorithm that is trained on the same kind of data for which detection is required! but
they have the advantage of broad apphcability without the requirement for suitable training
data.

A Markov Random Field (MRF) model of the seabed background was developed by Mignotte
et ai. [34-35]. This model is able to describe seabeds that include sand waves and other clutter
or structure! and allows for segmentation of the image into different texture regions. In this
work! computationally intensive methods such as simulated annealing and a genetic
algorithm were tested for their ability to detect objects on the seabed. The genetic algorithm
gave more favourable results.

Reed et ai, [37-38L at Heriot Watt University and SeeByte Ltd! have used an MRF model to
segment sidescan sonar images into three different regions: highlights (including returns from
bottom objects)! shadows of objects and general background. The segmentation is direction­
oriented; it takes account of the fact that the shadow of an object protruding from the seabed
will fall on the long-range side of the object. While determining the optimal MRF parameters
is computationally intensive! approximations can be made to speed up the process. Post­
segmentation processing is used to select highhghts of a mine-like size which are paired with
neighbouring shadows.

For extraction of object features and classification! a cooperating statistical snakes model is
used to identify the boundaries of objects and shadows. This method is an extension of a
standard technique for segmenting images to isolate objects! by enclosing them in snake-like
boundaries. In the cooperating statistical snakes model! the highlight and the shadow are
enclosed in this way with two boundaries that are constrained to be mutually consistent. In
this way! realistic feature boundaries are able to be drawn for both the highhght and the
shadow! enabling classification of mine-like objects in the presence of sand waves! which can
disturb the mine and shadow boundaries calculated using other algorithms. In further work
[39-40L Dempster-Shafer theory (an extension of probability theory based on 'belief
functions!) was used as an aid in the classification process. This approach helps in the
classification of objects which may have been viewed multiple times from different aspects.
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5.3 Recent work

More recently! the Heriot-Watt group has used a supervised algorithm for detection and
classification! based on features calculated using central filters [41]. Training of the algorithm
enabled features to be classified as mine or non-mine. A major emphasis of this work was the
use of !augmented reahti images to provide the large number of images including target
objects that are required for training. In this approach! targets were synthetically placed in real
sidescan sonar imagery! at random positions and orientations. A seafloor model was
constructed from the sidescan imagery [42L and this information was used to calculate hkely
appearances of the targets with their shadows. This approach was found to be effective!
enabhng the trained algorithms to detect real MLOs in trials data.

Science Apphcations International Corporation (SAIC - Newport! RI! USA) has employed
CAD/CAC to automate the processing of large quantities of sidescan data! collected
commercially for the National Oceanic and Atmospheric Administration (NOAA) [44].
Constant False Alarm Rate (CFAR) detection is used! with a spht window to detect a highhght
followed by a shadow. Sand waves are mitigated by Fourier transforming the images to place
them in the wave-number domain! in which periodic sand waves give rise to peaks! which are
then removed using a median filter. A neural network scheme was trained to classify the
detected objects into mine/non-mine categories.

Chapple [7] has used a straightforward! unsupervised approach to detection ofmines in high­
quahty imagery obtained from DSTO!s REMUS 100 AUV. This technique makes use of the fact
that! in many images containing mine-hke objects! some of the brightest pixels in that part of
the image correspond to returns from the mines! while some of the darkest pixels in a local
area correspond to shadows. Images are divided into small sections! in which the local
intensity histograms are calculated to determine highhght regions (pixels occupying the top
few percentiles of the histogram) and shadow regions (pixels occupying the bottom few
percentiles). Highhght and shadow regions within specified size hmits are then identified!
and highhght/ shadow pairs satisfying certain geometrical relationships are regarded as
detections. When apphed to high-quahty imagery! this approach yielded few false alarms.
Further development and testing are required to compare the performance of this simple
technique with statistical analytical approaches implemented in commercial software [45].
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6. Fusion of algorithms

While individual CAD/CAC algorithms have their strengths and weaknesses, it is often
possible for a combination of algorithms to perform significantly better than anyone
algorithm in isolation [28]. That is, for a given false alarm rate, there will be a higher
probability of detection.

In order to gain from the use of multiple algorithms, it is necessary that the different
algorithms are, to a significant degree, statistically independent of one another. Detection/
classification algorithms aand bare said to be statistically independent if the joint probability
Pdc(a,b) of detecting and correctly classifying an MLO in both algorithms is equal to product
Pdc(a)Pdc(b) of the individual detection/classification probabilities. This condition has been
observed to be reasonably accurate in practice [28], when apphed to the results of algorithms
that operate quite differently. Similarly, differently operating algorithms often give rise to
different false alarms, so that the probability that both algorithms will generate the same false
alarm is relatively small.

Studies by Aridgides et al. [22-23] considered the fusion of the three detection/ classification
algorithms from Lockheed Martin, Raytheon and the US Naval Surface Warfare Center,
Coastal Systems Station, described in Section 5.1.1. Various methods of fusion were
investigated for detection/ classification probabilities and the numbers of false alarms. These
methods included 'logic-based fusion' methods, in which the three sets of results were
combined using various combinations of the results combined using Boolean AND and OR
operators. Another successful method was the '2-out-of-3' method, a particular instance ofm­
out-of-n fusion (m <= n). This means that if there are n algorithms, and a target is detected and
classified as an MLO by at least m of these algorithms, then the target is included in the overall
result.

Aridgides et al. found that significant improvements over these methods can be obtained by
employing the log-hkehhood ratio test (LLRT) algorithm in fusing the results of different
detection schemes. In this approach, detection confidence vectors are formed and feature
vector orthogonahsation is performed, so that optimal decision rules can be formulated.
LLRT-basedfusion exhibited a threefold reduction in the false alarm rate over the 2-out-of-3
method, and a 4:1 improvement over logic-based fusion [23], as shown in Figure 9. Further
recent improvements in fusion techniques are described in [30].
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Figure 9: Results offusion ofCADjG4C algorithms, for one set ofinput data (from [23])

In score-based algorithm fusion, the k-th detection algorithm assigns a score Sk between aand
1 to any object that it detects. If the score is greater than a certain threshold value, then a
contact is regarded as having been detected; otherwise it remains undetected. Fusion of
algorithms can be performed by a number of processes, such as comparing the total of scores
{skI for an object with a threshold value, or using some other linear combination of the scores
to calculate a weighted sum.

A recent study by Dobeck quantified the gains that are available in a score-based fusion
technique [31]. Dobeck found that the probabilities Pd and Pfof detection and false alarm in
his scenario are approximately given by

Pd-fu.slDn = Pd-mm ; P - 2-(n-l)p .
f-fu.slon - fmm I

where n is the number of fused algorithms, and Pd-mm and Pfmm are the minimum Pd and Pf
values of all the algorithms. Thus, by fusing four or five algorithms, one could hope to reduce
the false alarm rate to one eighth or one sixteenth of the best Pfvalue, without any loss in
detection performance over the worst-performing algorithm. In this scenario, one can afford
to run the individual algorithms with higher Pd and higher Pf than would normally be
tolerated, in the knowledge that the fusion process will bring the false alarm rate down.
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7. CADjCAC in synthetic aperture sonar imagery

7.1 Introduction to synthetic aperture sonar

In the past few years, the resolution and range of sidescan sonar have arguably approached
the hmits of what is technically and operationally feasible. One-to-two decimetre and sub­
decimetre resolutions have been achieved at the cost oflong, multi-element transducer arrays,
or by moving to frequencies around 1 MHz or higher, but at these frequencies range is
severely hmited by acoustic absorption in the water [46]. For example, DSTO's REMUS 100
AUV is fitted with a simple Marine Sonic sidescan sonar that has a 900 kHz channel with a
resolution of 20 cm and a practical maximum range of30 to 40 m, and a 1.8 MHz channel with
a resolution of 5 to 10 cm and a maximum range of 10 to 15 m. A 2.4 MHz sonar from the
same manufacturer that reputedly achieves 1 cm resolution has a maximum range of only
around 6 m [47]. The larger and more complex L-3 Klein 5500 sidescan, which operates at 455
kHz and includes a 12-element, 1.2 m long transducer array, achieves 20 em resolution out to
a range of about 75 m. Range and range resolution enhancements have also been achieved by
moving to wide-band, pulse-compression signal processing. Ultimately, however, the scale
and difficulty of the mine detection problem suggests the desirability of sonars capable of
achieving sub-decimetre resolutions extending over swath widths much in excess of the few
metres to perhaps few tens ofmetres that are currently feasible. The array lengths necessary to
achieve this with conventional sidescan sonar become inconvenient and unwieldy, especially
when the sonar is required to fit on the hull of an AUV.

For more than two decades, synthetic aperture sonar (SAS) has been investigated as a
potential solution to the hmitations of conventional sidescan sonar, and development has
reached the point where a few models with potentially desirable characteristics have become
commercially available [48-50]. In synthetic aperture processing, echo returns from a series of
sonar pings are combined so that there is effectively an aperture (transducer array length) that
is much longer than the transducer array element length 1. While the maximum cross-track
range is the same as for a conventional sidescan sonar operating at the same frequency, it is
theoretically pOSSible to maintain the along-track resolution independent of cross-range by
aperture synthesis. In principle, for a single transducer element and an unhmited effective
aperture, the along-track resolution can be maintained at l/2, as for synthetic aperture radar
(SAR).

In practice, for the sonar to function as from a synthetic aperture, the position of the sonar at
each ping must be known with great accuracy and the difficulty of maintaining sufficient
positional accuracy increases as the aperture length increases. The resolution that can be
achieved is therefore 1.5 to 2 times coarser than the theoretical value [48] and tends to degrade
slowly with range. In addition, factors such as electronic and ambient noise become more
important as range increases, and multipath reverberation also increases, to the point that the
maximum effective range of the sonar may be dictated by reverberation in shallow water.

A further difference between synthetic and real-aperture sonar is the function of multiple­
element receive arrays. In a real aperture sonar, the length of the receive array determines the
resolution achievable by the sonar and the maximum speed of advance. In synthetised
aperture sonar, the total length of the aperture determines only the maximum speed of

23



DSTO-GD-0537

advance. In essence, the sonar cannot travel more than half the length of the receive array per
ping interval, limiting the attainable range for a given array size and platform speed.

The engineering problems associated with SAS processing have proven to be more difficult to
solve than those associated with SAR, which is now widely used. Nevertheless, the
capabilities of SAS devices now being marketed are impressive: for example, the 100 kHz
HISAS 1030 [48] sonar developed by FFI, the research arm of the Norwegian Department of
Defence, in conjunction with Kongsberg Maritime, is claimed to be able to achieve better than
5 cm resolution both along-track and cross-range for ranges up to 200 mat 4 knots. It is also
interferometric, so the resulting imagery is associated with accurate bathymetry [51]. A
further advantage of the HISAS sonar is that Kongsberg Maritime claim to have succeeded in
making their HUGIN 1000 AUV sufficiently stable to accommodate the HISAS sonar. 6

7.2 SAS imagery

SAS data presented as grey-level imagery can be interpreted in much the same way as SSS
imagery, but it should be noted that there are some Significant differences. There are several
effects caused by the fact that sonar returns are collected over a range of aspect angles,
including [52]:

• specular reflections from strong scatterers (glint), more prominent than in SSS due to
the increased range of sonar incidence angles, sometimes overwhelming non-specular
returns from the seabed;

• differences in the appearance of complex features and resonant reflectors as viewed
from different angles;

• shadows that move or change shape as the viewing angle varies; and

• aspect-dependence in bottom reverberations andmultipath effects, particularly from
sloping seabeds in shallow water areas.

Other differences in SAS imagery include:

• the larger inherent dynamic range of the data, in which highlights may be orders of
magnitude more intense than in corresponding sidescan sonar images;

• wavenumber spectral data (including phase and amplitude information) allowing
additional methods of processing to retrieve target structural information; and

• the sheer volume of data generated by a high-resolution system operating over wide
swath widths.

Hansen et al. [52] have described strategies for processing SAS imagery containing these
angular effects. Variation in the appearance of features with aspect angle often results in
blurring of these features in images formed from the synthetic aperture. With appropriate
processing, however, it is possible to mitigate these effects and even gain more information
about targets, by studying these angular dependences. Hansen et al. used wavenumber
processing to remove some glint effects from the imagery. Furthermore, they used the Fixed
Focus Shadow Enhancement technique, based on a technique developed for SAR imagery

6 Note that the stability constraints associated with SAS are considerably more stringent than those
associated with high-resolution sidescan sonar, because signals sent and received at different times
must be combined with the correct phase.
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[53], to sharpen the shadows, which are modelled as moving targets. In this process, the
shadow is made sharp, while the surrOlmding, non-moving imagery is blurred. This kind of
processing has been demonstrated operationally [54]. It should be conducted as an
intermediate step, after targets have been detected and prior to the classification of mine-like
objects, to improve the classification performance.

Hagen and Hansen [55] have demonstrated that some of the difficulties associated with SAS
processing can be overcome by effective design of the sonar hardware, in developments
involving the Kongsberg Maritime HISAS 1030 sonar on the HUGIN 1000-MR AUV. Surface
reverberation effects have been reduced by using a phased array transmitter, allowing the
beam to be steered away from the sea surface. The addition of a second receiving array,
parallel to the first and directly above it, has allowed estimation of the underwater
topography via interferometric processing. The resulting topography is then employed to
improve the focusing process, in comparison with what can be achieved by the assumption of
a flat seabed. Their use of a relatively high frequency (for SAS) allows the recovery of
shadows without undue loss of resolution. Finally, they and others have discovered that SAS
processing reduces multipath effects, as different multipath signals arrive out of phase with
direct arrivals and each other and are thereby integrated away during the processing.

Bell et ai, [47] from the Heriot-Watt University group used their model-based approach, as
described in Section 5.2 [37-40], to process SAS imagery. While the SAS imagery suffered from
greater amounts of speckle and less distinct shadows than in corresponding SSS imagery, the
cooperating statistical snakes algorithm was able to mark appropriate boundaries around the
bright features and shadows, without being comprOmised by the speckle. In SSS imagery,
target highlights are somewhat random in their appearance, and most of the information for
classification of the targets is contained within the shadow. In the SAS imagery, however, Bell
et ai, found that target highhght areas of images also contain information useful for classifying
the targets, due to the higher resolution of SAS.

The processing of SAS imagery is an area of ongoing research, to provide the best possible
techniques for automatic detection and classification of significant seabed features.
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8. Conclusion

Detection of significant objects such as mines has progressed significantly in recent years, with
the emergence of reliable AUVs and the development of automated image processing
techniques. The available techniques, while not mature, show great promise for reliable
detections of mine-like objects in relatively uncluttered environments using a sidescan sonar
or synthetic aperture sonar mounted on an AUV. With data from a high-resolution sidescan
sonar, an object proud of the seabed can often be detected by the coincidence of an acoustic
highlight and shadow in the image of the object, and the shape of the shadow indicates the
geometry of the object. Synthetic aperture sonar has the advantage of allOWing for high­
resolution surveys out to a greater detection range. The shadows are generally less distinctive
but the highlight resolution is often higher, so there is more emphasis on analysing the
highlights, and not just the shadows, in classification of bottom objects detected using SAS
systems.

Detection/ classification routines can broadly be divided into two kinds: the operation of
supervised and unsupervised algorithms. Supervised algorithms require training data to set
up their operation; unsupervised algOrithms do not. Supervised algorithms can be trained for
the required detection task using images that are representative of the clutter backgrounds
likely to be encountered, providing flexibility to cope with both straightforward and difficult
detection tasks.

While supervised algorithms can be expected to perform better when there is a training data
set appropriate for the test data (the data in which unknown mines must be detected), the task
of obtaining an appropriate training data set is non-trivial. There must be mine-like objects in
known locations, so that valid detections and false alarms can be identified, and the
background clutter and reverberations should be typical and representative of those in the test
data. There should also be enough training data so that anomalies in particular training
images do not affect the overall detection performance. Training with data sets including
atypical backgrounds and reverberations can actually impair the performance of a trained
algorithm; it is better to restrict the training data to contain only backgrounds that are typical
and representative of those encountered in the detection task at hand [17]. There is no clear
measure of how appropriate the training data set is to the detection task at hand; human
judgement may be required in making such decisions. When mine hunting in an area atypical
of previously surveyed areas, significant time and resources may be required to gather
training data, before the mine hunting beginS in earnest. Once a suitable set of background
imagery is obtained, the 'augmented reality' approach could be used [41] - artificially
inserting mine shapes into background digital imagery, to alleviate any paucity of training
data containing mine-like objects.

Unsupervised algorithms, set up with 'catch-all' detection processes, are simpler to
implement, particularly as no training data set is required, but these algorithms cannot be
expected to work as effectively in all circumstances as suitably trained algorithms.
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The fusion of several different algorithms has been demonstrated to provide dramatic
improvements in the probability of detection and correct classification ofmine-like objects (for
a given false alarm rate) over what can be achieved by anyone of these algorithms
individually.

It is recommended that Dsm continue investigating both unsupervised and supervised
algorithms for detection of mine-like objects in sonar imagery from AUVs, to build up a set of
trusted algorithms. This work will serve three main purposes:

1. enable the automatic processing of large volumes of data being acquired by DSTO
and, during exercises, the RAN, so that features of interest can be easily discovered
and interrogated;

2. enable comparative performance testing of different algorithms (or combinations of
algorithms) as candidates for a post-processing aid for Defence operations; and

3. develop techniques for onboard processing on AUVs, to enable intelligent decision­
making based on detected features.

Algorithms should be tested on a variety of data encompassing the range of environmental
conditions likely to be encountered. It may be that different algorithms will perform better
under different conditions of the sonar and the environment. Once several candidate
algorithms are available, fusion of these algorithms is likely to improve the overall detection
performance without increasing the false alarm rate. Testing of the best algorithms as decision
aids can then take place, and comparisons with the performance of human analysts can be
made.

The question remains as to whether automated detection and classification of nrine-like
objects will be trusted enough to be relied upon, without the need for a human operator to go
back through all the data. How well will automated techniques work in areas of strong clutter
or in rough seas causing strong surface reverberations? How well will they work when mines
are partially buried? Questions such as these are difficult to answer, as they require extensive
investigations. Overseas experience has suggested that it is very difficult to achieve a level of
trust sufficient for automated systems to displace human analysts [2]. Mistakes made with the
introduction of premature, poorly performing CAD/CAC systems are not easily forgotten.
Even when the automatic detection/ classification performance is better than for a human
operator, such gains may not be reCOgnised, as valid detections by the automated system tend
to be regarded by human analysts as false alarms [2]. The introduction of CAD/ CAC systems
for post-processing of data must be very carefully managed to achieve the best possible
outcomes.

In any event, the ability of AUVs to make onboard tactical decisions based on real-time
processing of their imagery will greatly enhance their utility and performance in mine hunting
operations. This is a role for automated systems that is not easily performed by human
analysts, in the underwater domain in which high-bandwidth communications are difficult or
impossible. CAD/ CAC processing will also assist in the detection of changes over time in the
distribution of mine-like objects, even in cluttered areas. Automated image processing will
enable the detection of bottom objects to become more consistent and rellable and less labour­
intensive than was previously pOSSible.
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